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1. Introduction

In [6], Jankowski considered the existence and uniqueness of solutions of
the following initial value problem (IVP) for nonlinear Riemann-Liouville
fractional differential equations with deviating arguments:

DI x(t) = f(t, x(t), x(a(t))), te I =[0,T], T >0,

o] =x,
where f eC(IJxPxP, P), aeC(J,J), a(t)<t,teJ and 0<q<1, by using the
Banach fixed point theorem and monotone iterative method.

In this paper, we investigate the following IVP for nonlinear fractional
differential equation with advanced argument:

{Dg;x(t) = f(t, x(t), x(0(1)), te I =[0,T], T >0,
x(0)=9g(x),

where f (t, x(t), x(0(t))) € C[0,T1xP2,P),0 cC(3,3),t <O <T, te J,

g : C.(J)>P is a continuous functional, X(0)=t"“x(t),, and DZXx(t) is

the Riemann-Liouville fractional derivative of x of order « (0<a <1).

Since f(t,x(t), x(A(t))) is continuous, the nonlinear IVP (2) is equivalent to
the following integral equation

(1)

)
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X(t) = gOOt* + ﬁ [t -9)"" 1 (5. X(5). X(6(s))) s, 3)

where T denotes the gamma function. Advanced differential equations are very
important in industry, engineering, economics and so on [4, 5]. Firstly, uniqueness
of solution is obtained by using a Banach fixed point theorem with weighted
norm, can be found in [1, 3, 6, 8, 10, 17, 19]. However, discussion on initial value
problems of fractional differential equations with advanced arguments is rare.
Secondly, in [6], in order to discuss the existence and uniqueness of IVP(1),
Jankowski divided 0<q<1 into two situations, one is 0<q<1/2 with an
additional condition and the other is 1/2<q<1. In this paper, we unify the two
situations without using the additional condition. Thirdly, for the study of
fractional differential equation, existence of extremal solutions of problem [6] is a
useful tool (see [9, 11, 12, 13, 19]). We know that it is important to build a
comparison result when we use the monotone iterative technique. It makes the
calculation easier and is suitable for the more complicated forms of equations.

The paper is organized as follows: In Section 2, we present some useful
definitions and fundamental facts of fractional calculus. In Section 3, by applying
Banach fixed point theorem with the corresponding weighted norm, we prove the
uniqueness of solution for nonlinear VP (2). In Section 4, we develop the
monotone iterative technique and apply it to prove that existence of extremal
solutions of nonlinear IVP (2). Lastly, we illustrate our results with suitable
examples.

2. Preliminaries

For the reader's convenience, we present some necessary definitions from
fractional calculus and Lemma. Let C__(J,P)={xeC((0,T],P): t*“xeC(J,P)}

with the norm

_ 1-
X, , = max]t“x(t),

where 4 is a fixed positive constant. Clearly, the space C, ,(J,P)is a Banach

space. Now, let us recall the following definitions from fractional calculus (for
details see [7, 14]).
Definition 1. For « >0, the integral

1 t
1 f(t)=——| (t—s)*"f(s)ds
A r(a)jo( )1 (s)
is called the Riemann-Liouville fractional integral of order «, where T' is the

gamma function. Note that, 1, f (t) is defined on [0,T] for f €L (0,T).

Definition 2. For function 1,,” f (t) € AC"[0,T] the Riemann-Liouville fractional
derivative of order & (n—1< e« <n) can be written as

D2 f (t) = (%) (1t (t))= ﬁ&j j; (t—s)"“f(s)ds, t > 0.
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Lemma 1 [7]. Let n—1<a<n and let f__(t)=17.“f(t) be fractional integral

of order n—«a. If f(t)eL(0,T) and f,_ (t)e AC"[0,T], then we have the
following equality

1 D5 £ (1) = f(t)—iw

Cf () =10 (). 4
2+ (t) (t) (4)

3. Uniqueness of Solution

In this section, we discuss the uniqueness of solution for nonlinear 1\VP (2)
for Riemann-Liouville fractional differential equation with advanced argument
under the following conditions:

(H,) There exist nonnegative constants L,, L,such that

[F vy, V) — F U, u,)| S Ljv, —u [+ L|v, —u,|, Vted, v,,u; eP, i=12,
(H,) There exists a constant L; € (0,1) such that
l9(u) —g(u,)| < Lyju, —u2||CH, vted, vu,u,eC__(J).
Lemma 2. Letf(t,x(t),x(&(t)))eC(J xPZ,P). Suppose x(t) is a solution of
nonlinear IVP (2), if and only if x(t) is a solution of integral equation
X(t) = g ()t 1+— j (t—s)* (s, X(8), X(6(s)))ds . (5)
Proof. Assume that x(t) satisfles IVP (2). From the first equation of IVP (2) and

Lemma 1, we have

15.x(t)
X(t) = F(L)

a-1 1 t a-1
=900t s [ (t=5)" (s, x(5), x(8(s)) ).

Conversely, assume that x(t) satisfies (5). It is easy to check x(t)eC, ,(J).

1 ¢ .
F(a) L (t—s)“" f(s,x(s), x(6(s)) )ds

Applying the operator Dy, to both sides of (5), we have
DE x(t) = f(t, x(t), x(8(1))).
In addition, we have X(0) =t"“x(t)|,_, = 9(x). The proof is complete.

Theorem 1. Let (H,)-(H,)hold, f eC(JxP? P).Then the nonlinear IVP (2)
has a unique solution.
Proof. Define the operator T : C,_,(J)—>C,_,(J) by

Tx(t) = g(x)t** +—I (t—s)“™ f(s, x(s), X(0(8)))ds. (6)

Clearly, the operator T is well defined on C,_, (J) . Next, we show that
T is a contraction operator C,_,(J). For convenience, let
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I'a)T“
{Lg r(2)(L1 L)} (7)

Using assumption (H,), (H,). Foranyx,yeC, _(J), we have

[Tx=Ty| = max|t™ [(Tx)(t)—(Ty)(t)]l

< |9(x) - g(y)[+ max (t=5)"*[ (s, x(5), x(6(s)))~ f (5, (5), y(6(s))) s

ted 1"( )I
< Lyfx—y], _ +kymaxt j (t—35)“2[Lu|x(s) - Y(5)|+ L, [x(6(s)) - y(O(s))|Jds

SLbo e [ 9 Lo, Loy ol
+L ~a a-1.a-
< L3||x—y||qa+%n?€a3xtl [ =gy s aspeoyl,

Loyl o e Loyl
< {Ls RO Lz)}"X— .

I'2a)
According to (7) and using Banach fixed point theorem, the nonlinear IVP (2)
has a unique solution. The proof is complete.

Lemma3. Let M, N eC(J), and [M(t)| <M, [N({t)| <N, Vte],
o €C,_,(J). The linear initial value problem:
DZ x(t) = M (©)x(t) + N(©)x(O(t)) + o(t), t [0, T], O<exr <1,
{ X(0) =t “X(V)] o = 9(X)
has a unique solution

x(t) = g(x)tal+— [[t=5)" " [M(©)x(s) + NE)X(OE) +o)]ds.  (9)

(8)

Proof. It follows from Theorem 1.
Remark 1.
i. Putting M(t)=0 and N(t) =0, inthe above linear I\VVP (8), we have the
results obtained by Zhang [19];
ii.  Putting N(t) =0, in the above the linear IVP (8), we have the results
obtained by Kilbas et al., [7], Zhang [19], Wei et al., [16];
iii. Putting a=1 and N()=0, in the above linear IVP (8) is
X'(t) = Mx(t) + o(t), X(0) = g(x), we have the results obtained by
Bonilla, [2], Kilbas et al., [7], Wei et al., [16];
iv. Putting N(t)=0 and o(t) =0, in the above linear I\VVP (8), we get the
solution of the corresponding homogeneous I\VVP (8) of the form
X(t) =T (x)g(X)t*"E, , (Mt*), t [0, T](see Kilbas et al., [7]).
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4.  The Monotone Iterative Technique

In this section, the monotone iterative technique for the nonlinear IVP (2) of
Riemann Liouville fractional differential equation with advanced argument is
developed and obtained the existence of extremal solutions of IVP (2). We need
the following comparison result which will play a very important role in our
further discussion.

Lemma4. Let O<a <1l M, NeC(QJ), [M(t)|<M,, IN(t)<N,.
Suppose that
TT'()
I'2a)
holds, and peC,_,(J) satisfies

PO < PO + = [1(t-5)"*[M(5)p(e) + N(5) p(O(&)]ds.
(@)

p(0) < 0.

(M, +N,)<1 (10)

Then p(t)<0 forall teJ .

Proof. It is by method of contradiction. Suppose that p(t) £0, Vt € J . So there
exists at least one t, € J such thatt’ “p(t,) > 0. Without loss of generality, we
assume

1-a _ l-a _
tp(t.) = max i p(t) = >0.

We obtain that
P A0+ -9 MPE) + NOPEEN]GS
< L e MRS N PO
<MLL -9t s o)
S (O CORCOE

Let t=t,, we have
T°T
P (TS;)(Ml + Nl)jpl'
So
TT(x)
I'2a)

(M, +N,)>1,
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which contradicts inequality (10). Hence p(t)<0 for all teJ. The proof is
complete.
Remark 2. If M(t) >0 and N(t)=00nJ, then Lemma 4 reduces to (Wang, [15],

Tar(‘)’)Ml(t)<1from (Wang, [15]) is
2a)

Lemma 2.5) (note that condition

superfluous).
Definition 3. A function x, € C,  (J) is called lower solution of IVP (2) if

{xo (1) <K Ot + 55 [ (t—5) " F(5,%,(3), X, (O(s)))ds, ted
X, (0) < g(X,).
Analogously, Yy, € C,_,(J)is called an upper solution of nonlinear IVP (2) if

{ Yo(1) = To (Ot + 25 [ (t=9)" £ (5, Yo(5), Yo (6(5)))ds, t e J
¥0(0) 2 g(Y,).

In further discussion, we need the following assumptions:

(H,) Functions x, and y,are ordered lower and upper solutions of nonlinear
IVP (2) such that x,(t) <vy,(t), teJ.

(H,) There exist M, N € C(J) such that

ft.xy)- X y)2MOKX=X)+N@O(-Y)

where X, () < X(£) < x(t) < Y, (1), %, (0(1)) < Y(O() < y(O(F) <y, (6(1)).
(H;) The function g satisfies g(x) — g(X) > x—x, for X,(0) <X <x <Y, (0).
Theorem 2. Let (H;)-(H;) and inequality (10) hold. Then there exist two
monotone sequences {X,}.{Y.}<[X,,Y,]which converge uniformly to the
extremal solutions of nonlinear IVP (2) in the sector [x,,Y,], where
[X%, Yol =12 €C,_,(3): %(B) <z(t) < ¥, (t), t e J, %,(0) <Z(0) < ¥, (0)}
Proof. The proof consists of the following three steps.
Step 1. Construct two the sequences {X,}.{y.}. For any ne[x,,VY,] , we
consider the following linear initial value problem:
Dy x(t) = M (t)x(t) + N (t)x(O(t)) + o (t)
= (11)
x(0)=g(m),

where o (t) = f (t,7(t),7(0(1))— M (t)n(t) - N©)7(O()).
Obviously, by Lemma 3, the linear VP (11) has a unique solution which satisfies

{x(t) = X(O)t“ " + L5 o (=) [M(s)X(5) + N(8)x(O(s)) + o (s) ds,
X(0) = g(#).

Suppose that x(t) and x,(t) are two solutions of linear IVP (11). Let
p(t) = %, (t) — X, (t). Applying Lemma 4 again one can prove that p(t) <0, and

(12)
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thus  x, (t) < x,(t). As the same argument is valid for x, (t) —x, (t), we conclude
that x, (t) = x, (t). This proves uniqueness.

Now, we define an operator A : [X,,Y,] —>[X,,Y,] by x=An. Clearly,
the operator A is well defined on[X,, Y,], let 7,77, €[X,,Y,] suchthat 7, <n,.
Suppose that z,(t) = An,(t) and z,(t) = An,(t). Setting p(t) =z (t)—z,(t),we
obtain that

p() < PO +—— [t —5)"*[M () p(s) + N(5) p(O(s)) Jos

1
[(a)
and

p(0)=7(0)-7,(0)=9(7)-9(n,) <0.

By Lemma 4, we get p(t) <0, implies Az, (t) < An,(t) forall teJ. It means
that A is nondecreasing. Obviously, we can easily get that Ais a continuous map.
Letx,=AX,, ¥, =AY, ;,, n=12,....
Step 2. The sequences {x,} and{y,} converge uniformly to x*,y" respectively.
In fact {X,}and {y,} satisfy the following relation

Xg X $-o-SX <X Sy Ly, <Ly <Y (13)
Setting p(t) =%, (t) —x,(t) and x,(t)is the lower solution of nonlinear IVP (2),
we obtain

) < BOX"+ — [ =5 M(©)P(5) + N(5) p(O(s)s
(@

and
5(0) = i0(0) - il(o) < g(xo) - g(xo) =0.

By Lemma 4, we get p(t) <0, implies X, (t) <x,(t) forall t e J. Similarly,
we can show that y, <Y, forall teJ. Applying the operator A to both sides of
X, ) <x @), ¥, <y, and X, <X,, we can easily get (13). Obviously, the
sequences {x.,} and {y,}are uniformly bounded and equicontinuous. Hence by

the Ascoli-Arzela Theorem the sequences {x,} and {y,} converge uniformly on
J with

limx, =x",limy, =y".
Step 3. Prove that x", y“are extremal solutions of nonlinear IVP (2), and X, y”
are solutions of nonlinear IVP (2) on [X,,Y,],because of the continuity of

operator A. Let z €[X,,Y,] be any solution of nonlinear IVP (2). That is,

{ 2(t) = Z(Ot" ™ + 5 [ (t— ) £ (s, 2(5), 2(6(5)) ) s,
7(0)=g(2).
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Suppose that there exists a positive integer n such that x, (t) < z(t) <y, (t)
on J. Let p(t)=x,,,(t)—z(t).
Then we have

p(t) < PO + ﬁ [ =) IM(s) p(s) + N(5) p(O(s))]ds.
and
p(0)=X,,(0)-Z(0)=g(x,)—9(2) <0.

By Lemma 4, we get p(t) <0, implies X, (t) <z(t) for all teJ . Similarly, we
can get z(t)<y,,(t) forall teJ. Since X,(t)<z(t)<y,(t) forall ted, by
mathematical induction, we get that X, (t)<z(t)<y,(t) on J for alln.
Therefore, x"(t) <z(t) <y"(t) on J by taking n—oo.The proof is complete.

5.  Examples

Example 1. Consider the following I1\VP
D2 X(t) = t+ 4 x(t) + & x(t), te[0,1],
{ X(0) = g(¥) =X(n), 0<7 <1
where a=3%,T=1, o(t) =+t and f(t,x(t),x(\/f)):t+&x(t)+%x(\/f).
Obviously, f(t,x(t),x(\/f)) satisfies Lipschitz condition and there exist
nonnegative constants L, =&, L, =& such that

30
1 1 .
\ f(t, x(t), x(v't)) - f (t, y(b), y(\/f))‘ £%|x(t) —y(t) +%‘x(\/f) - y(ﬁ)\ ifted,
which shows that condition (H,) of Theorem 1 holds.
Also, there exists constant L, =5 € (0,1) . Moreover,

(14)

1
909 -0/ < gyl
So the condition (H,) of Theorem 1 is satisfied. The IVP (14) has a unique
solution. Consider the same equation as in IVP (14), taking X,(t)=0,

Y, (1) ~10t > +6, and then we have Y,(0) =10. Moreover,
[t s)‘%(s + 2 (105 +6)+ S flost + 6}jds,
()% 60 30
¥,(0) =10>2[105 % +6], 0<7 <1.
On the other hand, it is easy to check that X, < Y,and (H;) holds.

t? ot
And let M (t) =—, N(t) =sin—, we get that
(t) 50 (t) 30 Ve o

yo(t) =10t > +6> 10t +

247



ADVANCED MATH. MODELS & APPLICATIONS, V.2, N.3, 2017

f(t, (1), (V1)) = f (t, y(t), y(W1)) = ;—O[x(t) ~ y(t)]+sin%[xwf) —y(h)

where X, <u, <V, <Y,, X,(+t)<u, <v, <y, (V). So (H,)is satisfied.
We see that M, = S , N, _ 1 , which implies
60 30

1

TT@) (g, 4Ny =7 <1,
I'(2a) 20

It is easy to see that inequality (10) holds. Thus, all conditions of Theorem 2
are satisfied. Therefore, the IVP (14) has extremal solutions.
Example 2. Consider the following 1VP

{Doix(t) x(t)+  x(2t), te[0,1]
X(0) = 9(x) = 2 X(7), 0<7 <L,

Obviously, =%, Ot)=2t,T=1and f(t,x(t),x(2)) = L x(t) +: x(2t).
Let L =4, L, =5 and Ly =3. Itis easy to check that

(15)

(6 X, X(20) — F (6 Y1), y(2)| < 3—10|x(t) y) +%|x(2t) y),

1
909-90)|= 5l

So, (H,) and (H,)of Theoreml hold. Thus, all conditions of Theorem 1 are
satisfied, the VP (15) has a unique solution.
Consider the same equation as in I\VVP (15), taking X,(t) =0, y,(t) =t +6,

S {% (s’% + 6)+ 21—;3 (s’% + 6)} ds,
Jn

- 1
0)=1>—+—-—,0<pn<l.
yo( ) T n

and then we have Y,(0) =1.Moreover,

Yo(t)=t "

1 t
@G>

On the other hand, it is easy to check that x, <y, and (H,) holds. And let

M(t)=L, N(t) = S”“e , we get that

60 !
—2et

f(t, x(t), x(2t) - f (t, (1), y(2t) > @[x(t) —y()]+ [x(2t) - y(2t)]

where X, <Y <X<Y,, X (2t) < y(2t) < x(2t) <y, (2t). So(H,) is satisfied.
Obviously, M,

sinte

=+, N; =+, and then we can get

TT@py N7 <1
I'(2a) 0o
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Inequality (10) holds. All conditions of Theorem 2 are satisfied, so IVP (15) has
extremal solutions.
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