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1.    Introduction   

 

In [6], Jankowski considered the existence and uniqueness of solutions of 

the following initial value problem (IVP) for nonlinear Riemann-Liouville 

fractional differential equations with deviating arguments: 
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where  , ,  JCf  , , JJC ,)( tt  Jt  and 10  q , by using the 

Banach fixed point theorem and monotone iterative method. 

  In this paper, we investigate the following IVP for nonlinear fractional 

differential equation with advanced argument: 
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where     ,],0[))((),(, 2 TCtxtxtf  ,  JJC , , ,)( Ttt  ,Jt

   JCg 1:  is a continuous functional, 0

1 )()0(~


 ttxtx   and )(0 txD

  is 

the Riemann-Liouville fractional derivative of x of  order   .10   

Since  ))((),(, txtxtf   is continuous, the nonlinear IVP (2) is equivalent to 

the following integral equation  
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where  denotes the gamma function. Advanced differential equations are very 

important in industry, engineering, economics and so on [4, 5]. Firstly, uniqueness 

of solution is obtained by using a Banach fixed point theorem with weighted 

norm, can be found in [1, 3, 6, 8, 10, 17, 19]. However, discussion on initial value 

problems of fractional differential equations with advanced arguments is rare. 

Secondly, in [6], in order to discuss the existence and uniqueness of IVP(1), 

Jankowski divided 10  q  into two situations, one is 2/10  q  with an 

additional condition and the other is 12/1  q . In this paper, we unify the two 

situations without using the additional condition. Thirdly, for the study of 

fractional differential equation, existence of extremal solutions of problem [6] is a 

useful tool (see [9, 11, 12, 13, 19]). We know that it is important to build a 

comparison result when we use the monotone iterative technique. It makes the 

calculation easier and is suitable for the more complicated forms of equations. 

The paper is organized as follows: In Section 2, we present some useful 

definitions and fundamental facts of fractional calculus. In Section 3, by applying 

Banach fixed point theorem with the corresponding weighted norm, we prove the 

uniqueness of solution for nonlinear IVP (2). In Section 4, we develop the 

monotone iterative technique and apply it to prove that existence of extremal 

solutions of nonlinear IVP (2). Lastly, we illustrate our results with suitable 

examples. 

 

2.    Preliminaries 

 

For the reader's convenience, we present some necessary definitions from 

fractional calculus and Lemma. Let )},(:)],,0(({),( 1

1  JCxtTCxJC  
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where  is a fixed positive constant. Clearly, the space ),(1 JC  is a Banach 

space. Now, let us recall the following definitions from fractional calculus (for 

details see [7, 14]). 

Definition 1. For 0 , the integral  
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is called the Riemann-Liouville fractional integral of order  , where   is the 

gamma function. Note that, )(0 tfI   is defined on ],0[ T  for ).,0(1 TLf   

Definition 2. For function ],0[)(0 TACtfI nn 




 the Riemann-Liouville fractional 

derivative of order  )1( nn    can be written as  
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Lemma 1 [7]. Let nn  1  and let )()( 0 tfItf n

n







   be fractional integral 
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3.     Uniqueness of Solution 

 

In this section, we discuss the uniqueness of solution for nonlinear IVP (2) 

for Riemann-Liouville fractional differential equation with advanced argument 

under the following conditions: 

)( 1H There exist nonnegative constants ,1L 2L such that 

,2,1 ,, , , ),,(),,( 2221112121  iuvJtuvLuvLuutfvvtf ii   

)( 2H There exists a constant  )1,0(3 L   such that  

).(, , ,)()( 12121321
1

JCuuJtuuLugug
C 




  
Lemma 2. Let     ,))((),(, 2 JCtxtxtf  . Suppose )(tx

 
is a solution of  

nonlinear IVP (2), if and only if )(tx is a solution of integral equation 
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Proof.  Assume that )(tx  satisfies IVP (2). From the first equation of IVP (2) and 

Lemma 1, we have 
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Conversely, assume that )(tx  satisfies (5). It is easy to check ).()( 1 JCtx 

Applying the operator 


0D  to both sides of (5), we have  

 . ))((),(,)(0 txtxtftxD    

In addition, we have )()()0(~
0

1 xgtxtx t  

 . The proof is complete. 

Theorem 1. Let )( 1H - )( 2H hold, . ),( 2  JCf Then the nonlinear IVP (2) 

has a unique solution. 

Proof. Define the operator )()(: 11 JCJCT      by  
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Clearly, the operator T  is well defined on )(1 JC  . Next, we show that  

T  is a contraction operator )(1 JC  . For convenience, let  
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Using assumption )( ),( 21 HH . For any )(, 1 JCyx  , we have 
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According to (7) and using Banach fixed point theorem, the nonlinear IVP (2) 

has a unique solution. The proof is complete. 

Lemma 3. Let ,M ),(JCN  and ,)( 1MtM  ,)( 1NtN  ,Jt  

).(1 JC  
 
The linear initial value problem: 
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has a unique solution  
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Proof. It follows from Theorem 1. 

Remark 1. 

i. Putting 0)( tM  and ,0)( tN   in the above linear IVP (8), we have the 

results obtained by Zhang [19]; 

ii. Putting 0)( tN , in the above the linear IVP (8), we have the results 

obtained by Kilbas et al., [7], Zhang [19], Wei et al.,  [16]; 

iii. Putting 1  and ,0)( tN  in the above linear IVP (8) is 

)()()( ttMxtx  , ),()0(~ xgx   we have the results obtained by 

Bonilla,  [2], Kilbas et al., [7], Wei et al., [16]; 

iv. Putting 0)( tN  and 0)( t , in the above linear IVP (8), we get the 

solution of the corresponding homogeneous IVP (8) of the form 

             
],0[ ),()()()( ,

1 TtMtEtxgtx   


 (see Kilbas et al., [7]). 
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4.      The Monotone Iterative Technique 

 

In this section, the monotone iterative technique for the nonlinear IVP (2) of 

Riemann Liouville fractional differential equation with advanced argument is 

developed and obtained the existence of extremal solutions of IVP (2). We need 

the following comparison result which will play a very important role in our 

further discussion. 

Lemma 4. Let  ,10  ,M ),(JCN ,)( 1MtM  .)( 1NtN   
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which contradicts inequality (10). Hence 0)( tp  for all Jt . The proof is 

complete. 

Remark 2. If 0)( tM  and 0)( tN on J , then Lemma 4 reduces to (Wang, [15], 

Lemma 2.5) (note that condition 1)(
)2(

)(
1 




tM

T





from (Wang, [15]) is 

superfluous). 

Definition 3. A function )(10 JCx 
 
is called lower solution of IVP (2) if  
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Analogously, )(10 JCy  is called an upper solution of nonlinear IVP (2) if 
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In further discussion, we need the following assumptions: 

)( 3H Functions 0x  and 0y are ordered lower and upper solutions of nonlinear           

IVP (2) such that ),()( 00 tytx  .Jt  

)( 4H There exist ,M )(JCN such that 

 
))(())((),,(),,( yytNxxtMyxtfyxtf   

 

where )).(()(()(())((),()()()( 0000 tytytytxtytxtxtx    

)( 5H The function g satisfies xxxgxg  )()( , for ).0(~)0(~
00 yxxx   

Theorem 2. Let )( 3H - )( 5H  and inequality (10) hold. Then there exist two 

monotone sequences ],[}{},{ 00 yxyx nn  which converge uniformly to the 

extremal solutions of nonlinear IVP (2) in the sector ],[ 00 yx , where  

 .)0(~)0(~)0(~ ,),()()(:)(],[ 0000100 yzxJttytztxJCzyx    
Proof. The proof consists of the following three steps.  

Step 1. Construct two the sequences }{},{ nn yx . For any  ],[ 00 yx  , we 

consider the following linear initial value problem: 
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Obviously, by Lemma 3, the linear IVP (11) has a unique solution which satisfies 
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Suppose that )(1 tx  and )(2 tx  are two solutions of linear IVP (11). Let

)()()( 21 txtxtp  . Applying Lemma 4 again one can prove that 0)( tp , and 
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thus  )()( 21 txtx  . As the same argument is valid for )()( 12 txtx  , we conclude 

that )()( 21 txtx  . This proves uniqueness. 

Now, we define an operator ],[],[: 0000 yxyxA    by .Ax   Clearly, 

the operator A  is well defined on ],[ 00 yx , let  ],[, 0021 yx   such that  .21     

Suppose that )()( 11 tAtz    and  ).()( 22 tAtz    Setting  ),()()( 21 tztztp  we 

obtain that 
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By Lemma 4, we get ,0)( tp   implies )()( 21 tAtA    for all .Jt   It means 

that A  is nondecreasing. Obviously, we can easily get that A is a continuous map. 

Let ,1 nn Axx ,1 nn Ayy ,....2,1n  

Step 2. The sequences }{ nx  and }{ ny  converge uniformly to x ,
y  respectively. 

In fact }{ nx and }{ ny satisfy the following relation 

.0110 yyyyxxxx nn                             (13) 

Setting )()()( 10 txtxtp   and )(0 tx is the lower solution of nonlinear IVP (2), 

we obtain  
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By Lemma 4, we get 0)( tp , implies )()( 10 txtx 
 
for all .Jt  Similarly, 

we can show that  01 yy   for all Jt . Applying the operator A  to both sides of  

)()( 10 txtx  , 01 yy   and 01 xx  , we can easily get (13). Obviously, the 

sequences }{ nx  and }{ ny are uniformly bounded and equicontinuous. Hence by 

the Ascoli-Arzela Theorem the sequences }{ nx  and }{ ny  converge uniformly on 

J  with  

.lim,lim 






 yyxx n

n
n

n
 

Step 3. Prove that ,x y are extremal solutions of nonlinear IVP (2), and ,x y

are solutions of nonlinear IVP (2) on  ],,[ 00 yx because of the continuity of 

operator A . Let ],[ 00 yxz  be any solution of nonlinear IVP (2). That is,  
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Suppose that there exists a positive integer n such that )()()( tytztx nn   

on .J   Let  ).()()( 1 tztxtp n    

Then we have 
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By Lemma 4, we get 0)( tp , implies )()(1 tztxn   for all Jt . Similarly, we 

can get  )()( 1 tytz n  for all Jt . Since  )()()( 00 tytztx   for all Jt , by 

mathematical induction, we get that  )()()( tytztx nn   on J  for all n . 

Therefore, )()()( tytztx    on J  by taking  . n The proof is complete. 

 

5.     Examples 

 

Example 1. Consider the following IVP 
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It is easy to see that inequality (10) holds. Thus, all conditions of Theorem 2 

are satisfied. Therefore, the IVP (14) has extremal solutions. 

Example 2. Consider the following IVP  











     .10 ),()()0(~

]1,0[ ),2()()(

12

15300

32
2
1




xxgx

ttxtxtxD tt

                             (15) 

Obviously, ,
2

1 tt 2)(  , 1T  and ).2()())2(),(,(
1530

32

txtxtxtxtf tt   

Let  ,
30

1
1 L

15

1
2 L  and .

12
1

3 L  It is easy to check that  

,)2()2(
15

1
)()(

30

1
))2(),(,())2(),(,( tytxtytxtytytftxtxtf   

.
12

1
)()(

2
1C

yxygxg   
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Inequality (10) holds. All conditions of Theorem 2 are satisfied, so IVP (15) has 

extremal solutions. 
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